THE UPPER COMPLEMENT CONNECTED EDGE GEODETIC NUMBER OF A GRAPH

J. NESA GOLDEN FLOWER, Assistant Professor, Department of Mathematics, Holy Cross College, Nagercoil-629002,India. e-mail:nesagoldenflower@gmail.com,

ABSTRACT—A complement connected edge geodetic set of *G* is called a minimal complement connected edge geodetic set of *G* if no proper subset of *S* is a complement connected edge geodetic number $g_{cce}^+(G)$ is the maximum cardinality of a minimal complement connected edge geodetic set of *G*. Some general properties satisfied by this concept are studied connected graphs of order $p \ge 3$ with $g_{cce}^+(G)$ to be p - 1 is given. It is shown that for every pair of integers *a* and *b* with $3 \le a \le b$, there exists a connected graph *G* with gcce(G) = a and $g_{cce}^+(G) = b$, where upper complement connected edge geodetic number of a graph.

Keywords—distance, edge geodetic number, complement connected edge geodetic number, upper complement connected edge geodetic number.

1. INTRODUCTION

By a graph G = (V, E), we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology, we refer to [2]. For the neighborhood of the vertex v in G, $N(v) = \{u \in V(G) :$ $uv \in E(G)$. The degree of a vertex v of a graph is $deg(v) = |N(V)| \cdot \Delta(G)$ and $\delta(G)$ are the maximum and minimum degrees of the graph respectively. A vertex v is said to be universal vertex if deg(v) = p - 1. For $S \subseteq V(G)$, the induced subgraph G[S] is the graph whose vertex set is S and whose edge set consists of all of the edges in E that have both endpoints in S. A vertex v is called an extreme vertex of a graph G if G[N(v)] is complete. A vertex v in a connected graph G is said to be a semi-extreme vertex if $\Delta(G[N(v)]) = |N(v)| - 1$. Every semi-extreme vertex is extreme vertex of G that there are extreme vertices which are not a extreme vertex of G. A graph G is said to be semi-extreme graph if every vertex of G is a semi-complete vertex. A graph with at least two universal vertices is a semi-complete graph. Infact, there are semi-complete graph which has universal vertices. The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u - v path in G. An u - v path of length d(u, v) is called an u - v geodesic. A vertex x is said to lie on a u - v geodesic P if x is a vertex of P including the vertices u and v. The eccentricity e(v) of a vertex v in G is the maximum distance from v and a vertex of G. $e(v) = max\{d(v, u) : u \in V\}$ The minimum eccentricity among the vertices of G is the radius, radG or r(G) and the maximum eccentricity is the diameter, diamG. We denote rad(G) by r and diamG by d. Two vertices u and v are said to be antipodal d(u, v) = d. For two vertices u and v, the closed interval $I_e[u, v]$ consists of all edges lyingin a u - v geodesic. If u and v are adjacent, then $I_e[u, v] = \{uv\}$. For a set S of

vertices, let $I_e[S] = \bigcup_{u,v \in S} I_e[u, v]$. A set $S \subseteq V$ is called an edge geodetic set of G if $I_e[S] = E$. A set $S \subseteq V(G)$ is called an edge geodetic set of G if $I_e[S] = E$. The edge geodetic number $g_e(G)$ of G is the minimum order of its edge geodetic sets and any edge geodetic set of order $g_e(G)$ is an edge geodetic basis or a g_e -set of G. An edge geodetic set S of G is said to be aconnected edge geodetic set of G if G[S] is

2. NUMBER OF A GRAPH

Definition 2.1. A complement connected edge geodetic set of G is called a minimal complement connected edge geodetic set of G if no proper subset of S is a complement connected edge

geodetic set of G. The upper complement connected edge geodetic number $g_{cce}^+(G)$ is the maximum cardinality of a minimal complement connected edge geodetic set of G.

Remark 2.3. Every minimal complement connected edge geodetic set of *G* is a minimal complement connected edge geodetic set of *G*. But the converse need not be true. For the graph *G* given in Figure 2.1, $S_2 = \{v_2, v_3, v_5, v_7\}$ is a minimal complement connected edge geodetic set of *G*. But not a minimum complement connected edge geodetic set of *G*.

Observation 2.4. (i) Each semi-extreme vertex of a graph G belongs to every minimal complement connected edge geodetic set of G.

(ii) Let *W* be the set of all semi-extreme vertices of *G*. If *W* is the unique minimum complement connected edge geodetic set of *G*, $g_{cce}^+(G) = |W|$.

(iii) No cut vertex of a graph G belongs to any minimal complement connected edge geodetic set of G.

Observation 2.5. (i) For the tree *T* with *k* end vertices, $g_{cce}^+(G) = k$.

(ii) For the complete graph $G = K_p p \ge 2, g_{cce}^+(G) = p$.

(iii) If G is a semi-complete graph, then $g_{cce}^+(G) = p$.

(iv) For the wheel $W_p = K_1 + C_{p-1} p \ge 4, g_{cce}^+(G) = p - 1.$

Theorem 2.6. For the cycle $G = C_p$,

$$g_{cce}^{+}(C_p) = = \begin{cases} \frac{p}{2} + 1, & \text{if } p \text{ is even} \\ \frac{p+3}{2}, & \text{if } p \text{ is even} \end{cases}$$

Proof: Let C_p be $v_1, v_2, \ldots, v_p, v_1$.

Case 1*p* be even. Let p = 2n $(n \ge 2)$. Let $S = \{v_1, v_2, ..., v_{n+1}\}$. Then $I_e[S] = E(G)$. G[V - S] is connected. Therefore *S* is a complement connected edge geodetic set of *G*. We prove that *S* is a minimal complement connected edge geodetic set of *G*. On the contrary suppose that *S* is not a minimal complement connected edge geodetic set of *G*. Then there exists a complement connected edge geodetic set of *S* such that $x \notin S_1$. If $x = v_1$ or v_{n+1} , $I_e[S_1] \neq E(G)$. If $x = v_i$ for $i (2 \le i \le n)$, then $G[V - S_1]$ is not connected. Therefore S_1 is not a complement connected edge geodetic set of *G*. Hence S_1 is a minimal complement connected edge geodetic set of *G*. Hence S_1 is a minimal complement connected edge geodetic set of *G*. Hence S_1 is not a complement connected edge geodetic set of *G*. Hence S_1 is a minimal complement connected edge geodetic set of *G*. Hence S_1 is a minimal complement connected edge geodetic set of *G*. Hence S_1 is a minimal complement connected edge geodetic set of *G*. Hence S_1 is a minimal complement connected edge geodetic set of *G*. Hence S_1 is a minimal complement connected edge geodetic set of *G*. Hence S_1 is a minimal complement connected edge geodetic set of *G*. Hence S_1 is a minimal complement connected edge geodetic set of *G*. Hence S_1 is a minimal complement connected edge geodetic set of *G*. Hence S_1 is a minimal complement connected edge geodetic set of *G*. Hence S_1 is a minimal complement connected edge geodetic set of *G* and so $g_{cce}^+(G) \ge n + 1$. We prove that $g_{cce}^+(G) = n$. On the contrary that $g_{cce}^+(G) \ge m > n + 1$.

Case 2*p* is odd $(n \ge 3)$. Let p = 2n + 1. Let $S = \{v_1, v_2, ..., v_n, v_{n+1}, v_{n+2}\}$. Then as in Case 1, we can prove that $g_{cce}^+(G) = n + 2 = \frac{p+3}{2}$.

II Some Result on Upper Complement Connected Edge Geodetic Number of a Graph

Observation 3.1. For a connected graph *G* of order $p \ge 2, 2 \le g_{cce}(G) \le g_{cce}^+(G) \le p$

The following theorems shows that the bounds in Observation 3.1 can be sharp and strict.

Theorem 3.2. For a connected graph $G = P_{p_1} \times P_{p_2}(p_1, p_2 \ge 2), g_{cce}^+(G) = 2.$

Proof: Let P_{p_1} denotes a path on p_1 vertices and P_{p_1} denotes a path on p_2 vertices. For $p_1, p_2 \ge 2$, $P_{p_1} \times P_{p_2}$ is defined as the two-dimensional mesh with p_1 rows and p_2 columns. It is denoted by $M_{p_1 \times p_2}$ for $1 \le i \le p_1$ and $1 \le j \le p_2$, we denote the ith row and jth column vertex of $M_{p_1 \times p_2}$ as x_{ij} .

Theorem 3.3. For the complete bipartite graph $G = K_{m,n}$, $(2 \le m \le n)$, $g_{cce}(G) = g_{cce}^+(G) =$

m + n - 1.

Proof: Let $X = \{x_1, x_2, ..., x_m\}$, and $Y = \{y_1, y_2, ..., y_n\}$ be the two bipartite of G. Let $S = V(G) - \{y_n\}$. Then S is a complement connected edge geodetic set of G and so $g_{cce}(G) \le m + n - 1$. We prove that $g_{cce}(G) = m + n - 1$. On the contrary suppose that $g_{cce}(G) \le m + n - 2$. Then there exists a complement connected edge geodetic set of S' such that $|S'| \le m + n - 2$. Since G[V - S'] is connected, it follows that either $S' \subsetneq X$ or $S' \subsetneq Y$ or $S' \subset X \cup Y$. If $S' \subsetneq X$, then there exists $x \in X$ such that $x \notin S'$. Let e be an edge incident with x Then $e \notin I_e[S']$. Therefore S' is not a complement connected edge geodetic set of G. If $S' \subsetneq Y$, then by the similar way, we prove that S' is not a complement connected edge geodetic set of G.

Theorem 3.4. For the graph $G = K_p - \{e\}, p \ge 4$, Where *e* is an edge of $K_p, g_{cce}^+(G) = p$. **Proof:** Since *G* is a semi-complete graph, the result follows from Observation 2.5(iii).

Definition 3.5. Let C_6 be $v_1, v_2, v_3, v_4, v_5, v_6, v_1$. Let *H* be the graph obtained P_6 by introducing a new vertex *x* and introducing the new edges xv_1, xv_3, xv_4 and xv_5 . Let G_a be the graph obtained from *H* by introducing new vertices z_1, z_2, \ldots, z_a by joining each z_i ($1 \le i \le a$) with v_2 and v_6 . **Theorem 3.6.** For the graph $G = G_{a-5}(a \ge 7)$,

 $g_{cce}(G) = 6$ and $g^+_{cce}(G) = a$.

 v_5, x is a $g_{cce}(G) = 6$. Let $S_1 = \{x, v_1, v_2, v_3, v_4\} \cup$

 $\{z_1, z_2, ..., z_{a-5}\}$. Then S_1 is a complement connected edge geodetic set of G. We prove that S_1 is a minimal complement connected edge geodetic set of G. On the contrary suppose that S_1 is not a complement connected edge geodetic set of G. Then there exists a complement connected edge geodetic set S_2 such that $S_2 \subset S_1$. Let y be a vertex of S_1 such that $y \notin S_2$. If $y = z_i$ $(1 \le i \le$ a-5), then $v_2 z_i, v_6 z_i \notin I_e[S_2]$ for $(1 \le i \le a - 5)$. If $y = v_i$ $(1 \le i \le 4)$, then there exists at least one $e \in E(G)$ such that $e \notin I_e[S_2]$. Then there exists a complement connected edge geodetic set M of G such that $|M| \ge a + 1$. Since S, S_1 and S_3 are complement connected edge geodetic sets of $G, S \notin M, S_2 \notin M$ and $S_3 \notin M$. Also, since p = a + 2, we have |M| =a + 1. Since G[V - M] is connected, either v_2 or $v_6 \in M$. We assume that $v_2 \in M$. Therefore $v_5 \in M$. Hence it follows that $S_3 \subset M$, which is a contradiction. Therefore $g_{cce}^+(G) = a$.

Observation 3.7. Let G be a connected graph with $\Delta(G) = p - 1$.

(i) If G contains only one universal vertex, then $g_{cce}^+(G) = p - 1$.

(ii) If G contains at least two universal vertices, then $g_{cce}^+(G) = p$.

Theorem 3.8. For a connected graph G of order , $g_{cce}^+(G) = p$ if and only if $g_{cce}(G) = p$.

Proof: Let $g_{cce}^+(G) = p$. Then S = V(G) is the unique minimal complement connected edge geodetic set of G. Since no proper subset of S is a complement connected edge geodetic set, it is clear that S is the unique minimum complement connected edge geodetic set of G and so $g_{cce}(G) = p$. The converse follows from Theorem 3.1.

REFERENCES

[1] S.BeulahSamli, J.John and S.RobinsonChellathurai, The double geo chromaticnumber of a graph, Bulletin of the International Mathematical Virtual Institute,11(1),(2021), 25-38.

[2] F. Buckley and F. Harary, Distance inGraphs, Addition-Wesley, Redwood City, CA, (1990).

[3] Bijo S. Anand, ManojChangat and UllasChandran S V, The edge Geodeticnumber of product graphs, Algorithms and Discrete Applied Mathematics, (2018), DOI: 10.1007/978-3-319-74180-2-12.

[4] J.John and D.Stalin, The edge geodetic selfdecomposition number of a graph,RAIRO - Operations Research,(2020), doi: 10.1051/ro/2020073.

[5] J.John, D.Stalin, Edge geodetic selfdecomposition in graphs, Discrete Mathematics, Algorithms and Applications, (2020), doi.org/10.1142/S1793830920500640.