THE UPPER COMPLEMENT CONNECTED EDGE GEODETIC NUMBER OF A GRAPH
J. NESA GOLDEN FLOWER, Assistant Professor, Department of Mathematics, Holy Cross College, Nagercoil-629002,India. e-mail:nesagoldenflower@gmail.com,

Abstract

A complement connected edge geodetic set of G is called a minimal complement connected edge geodetic set of G if no proper subset of S is a complement connected edge geodetic set of G. The upper complement connected edge geodetic number $g_{c c e}^{+}(G)$ is the maximum cardinality of a minimal complement connected edge geodetic set of G. Some general properties satisfied by this concept are studied connected graphs of order $\mathrm{p} \geq 3$ with $g_{c c e}^{+}(G$ to be $p-1$ is given. It is shown that for every pair of integers a and b with $3 \leq a \leq b$, there exists a connected graph G with $\operatorname{gcce}(G)=a$ and $g_{c c e}^{+}(G)=b$, where upper complement connected edge geodetic number of a graph.

Keywords-distance, edge geodetic number, complement connected edge geodetic number, upper complement connected edge geodetic number.

1. INTRODUCTION

By a graph $G=(V, E)$, we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology, we refer to [2]. For the neighborhood of the vertex v in $G, N(v)=\{u \in V(G)$: $u v \in E(G)\}$. The degree of a vertex v of a graph is $\operatorname{deg}(v)=|N(V)| \cdot \Delta(G)$ and $\delta(G)$ are the maximum and minimum degrees of the graph respectively. A vertex v is said to be universal vertex if $\operatorname{deg}(v)=p-1$. For $S \subseteq V(G)$, the induced subgraph $G[S]$ is the graph whose vertex set is S and whose edge set consists of all of the edges in E that have both endpoints in S. A vertex v is called an extreme vertex of a graph G if $G[N(v)]$ is complete. A vertex v in a connected graph G is said to be a semi-extreme vertex if $\Delta(G[N(v)])=|N(v)|-1$. Every semi-extreme vertex is extreme vertex of G that there are extreme vertices which are not a extreme vertex of G. A graph G is said to be semi-extreme graph if every vertex of G is a semi-complete vertex. A graph with at least two universal vertices is a semi-complete graph. Infact, there are semi-complete graph which hasno universal vertices. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. A vertex x is said to lie on a $u-v$ geodesic P if x is a vertex of P includingthe vertices u and v. The eccentricity $e(v)$ of a vertex v in G is the maximum distancefrom vand a vertex of $G . e(v)=\max \{d(v, u): u \in V\}$ The minimum eccentricity among the vertices of G is the radius, $\operatorname{rad} G$ or $r(G)$ and the maximum eccentricity isits diameter, $\operatorname{diam} G$. We denote $\operatorname{rad}(G)$ by r and $\operatorname{diam} G$ by d. Two vertices u and v are said to be antipodal $d(u, v)=d$. For two vertices u and v, the closed interval $I_{e}[u, v]$ consists of all edges lyingin a $u-v$ geodesic. If u and v are adjacent, then $I_{e}[u, v]=\{u v\}$. For a set S of vertices, let $I_{e}[S]=\cup_{u, v \in S} I_{e}[u, v]$. A set $S \subseteq V$ is called an edge geodetic set of G if $I_{e}[S]=$ E. A set $S \subseteq V(G)$ is called an edge geodetic set of G if $I_{e}[S]=E$. Theedge geodetic number $g_{e}(G)$ of G is the minimum order of its edge geodetic sets andany edge geodetic set of order $g_{e}(G)$ is an edge geodetic basis or a g_{e}-set of G. An edge geodetic set S of G is said to be aconnected edge geodetic set of G if $G[S]$ is
2. NUMBER OF A GRAPH

Definition 2.1.A complement connected edge geodetic set of G is called a minimal complement connected edge geodetic set of G if no proper subset of S is a complement connected edge
geodetic set of G. The upper complement connected edge geodetic number $g_{c c e}^{+}(G)$ is the maximum cardinality of a minimal complement connected edge geodetic set of G.

Remark 2.3. Every minimal complement connected edge geodetic set of G is a minimal complement connected edge geodetic set of G. But the converse need not be true. For the graph G given in Figure 2.1, $S_{2}=\left\{v_{2}, v_{3}, v_{5}, v_{7}\right\}$ is a minimal complement connected edge geodetic set of G. But not a minimum complement connected edge geodetic set of G.
Observation 2.4. (i) Each semi-extreme vertex of a graph G belongs to every minimal complement connected edge geodetic set of G.
(ii) Let W be the set of all semi-extreme vertices of G. If W is the unique minimum complement connected edge geodetic set of $G, g_{c c e}^{+}(G)=|W|$.
(iii) No cut vertex of a graph G belongs to any minimal complement connected edge geodetic set of G.
Observation 2.5. (i) For the tree T with k end vertices, $g_{c c e}^{+}(G)=\mathrm{k}$.
(ii) For the complete graph $G=K_{p} p \geq 2, g_{c c e}^{+}(G)=\mathrm{p}$.
(iii) If G is a semi-complete graph, then $g_{c c e}^{+}(G)=\mathrm{p}$.
(iv) For the wheel $W_{p}=K_{1}+C_{p-1} p \geq 4, g_{c c e}^{+}(G)=\mathrm{p}-1$.

Theorem 2.6. For the cycle $G=C_{p}$,
$g_{c c e}^{+}\left(C_{p}\right)==\left\{\begin{array}{l}\frac{p}{2}+1, \text { if } p \text { is even } \\ \frac{p+3}{2}, \text { if } p \text { is even }\end{array}\right.$
Proof: Let C_{p} be $v_{1}, v_{2}, \ldots, v_{p}, v_{1}$.
Case $1 p$ be even. Let $p=2 n(n \geq 2)$. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n+1}\right\}$. Then $I_{e}[S]=E(G) . G[V-$ S] is connected. Therefore S is a complement connected edge geodetic set of G. We prove that S is a minimal complement connected edge geodetic set of G. On the contrary suppose that S is not a minimal complement connected edge geodetic set of G. Then there exists a complement connected edge geodetic set S_{1} such that $S_{1} \subset S$. Let x be a vertex of S such that $x \notin S_{1}$. If $x=v_{1}$ or v_{n+1}, $I_{e}\left[S_{1}\right] \neq E(G)$. If $x=v_{i}$ for $i(2 \leq i \leq n)$, then $G\left[V-S_{1}\right]$ is not connected. Therefore S_{1} is not a complement connected edge geodetic set of G. Hence S_{1} is a minimal complement connected edge geodetic set of G and so $g_{c c e}^{+}(G) \geq n+1$. We prove that $g_{c c e}^{+}(G)=\mathrm{n}$. On the contrary that $g_{c c e}^{+}(G) \geq m>n+1$.
Case $2 p$ is odd , $(n \geq 3)$. Let $p=2 n+1$. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}, v_{n+2}\right\}$. Then as in Case 1, we can prove that $g_{c c e}^{+}(G)=\mathrm{n}+2=\frac{p+3}{2}$.

II Some Result onUpper Complement Connected Edge Geodetic Number of a Graph
Observation 3.1. For a connected graph G of order $p \geq 2,2 \leq g_{c c e}(G) \leq g_{c c e}^{+}(G) \leq$ p
The following theorems shows that the bounds in Observation 3.1 can be sharp and strict.
Theorem 3.2. For a connected graph $G=P_{p_{1}} \times P_{p_{2}}\left(p_{1}, p_{2} \geq 2\right), g_{c c e}^{+}(G)=2$.
Proof: Let $P_{p_{1}}$ denotes a path on p_{1} vertices and $P_{p_{1}}$ denotes a path on p_{2} vertices.For $p_{1}, p_{2} \geq$ $2, P_{p_{1}} \times P_{p_{2}}$ is defined as the two-dimensional mesh with p_{1} rows and p_{2} columns. It is denoted by $M_{p_{1} \times p_{2}}$ for $1 \leq i \leq p_{1}$ and $1 \leq j \leq p_{2}$, we denote the ith row and jth column vertex of $M_{p_{1} \times p_{2}}$ as $x_{i j}$.
Theorem 3.3. For the complete bipartite graph $G=K_{m, n},(2 \leq m \leq n), g_{c c e}(G)=g_{c c e}^{+}(G)=$
$\mathrm{m}+\mathrm{n}-1$.
Proof: Let $X=\left\{x_{1}, x_{2}, . ., x_{m}\right\}$, and $Y=\left\{y_{1}, y_{2}, . ., y_{n}\right\}$ be the two bipartite of G. Let $S=$ $V(G)-\left\{y_{n}\right\}$. Then S is a complement connected edge geodetic set of G and so $g_{c c e}(G) \leq m+$ $n-1$. We prove that $g_{c c e}(G)=m+n-1$. On the contrary suppose that $g_{c c e}(G) \leq m+$ $n-2$. Then there exists a complement connected edge geodetic set of S^{\prime} such that $\left|S^{\prime}\right| \leq m+$ $n-2$. Since $G\left[V-S^{\prime}\right]$ is connected, it follows that either $S^{\prime} \subsetneq X$ or $S^{\prime} \subsetneq Y$ or $S^{\prime} \subset X \cup Y$. If $S^{\prime} \subsetneq X$, then there exists $x \in X$ such that $x \notin S^{\prime}$. Let e be an edge incident with x Then $e \notin$ $I_{e}\left[S^{\prime}\right]$. Therefore S^{\prime} is not a complement connected edge geodetic set of G. If $S^{\prime} \subsetneq \mathrm{Y}$, then by the similar way, we prove that S^{\prime} is not a complement connected edge geodetic set of G
Theorem 3.4. For the graph $G=K_{p}-\{e\}, p \geq 4$, Where e is an edge of $K_{p}, g_{c c e}^{+}(G)=\mathrm{p}$.
Proof: Since G is a semi-complete graph, the result follows from Observation 2.5(iii).
Definition 3.5. Let C_{6} be $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{1}$. Let H be the graph obtained P_{6} byintroducing a new vertex x and introducing the new edges $x v_{1}, x v_{3}, x v_{4}$ and $x v_{5}$. Let G_{a} be the graph obtained from H by introducing new vertices $z_{1}, z_{2}, \ldots, z_{a}$ by joiningeach $z_{i}(1 \leq i \leq a)$ with v_{2} and v_{6}.
Theorem 3.6. For the graph $G=G_{a-5}(a \geq 7)$,
$g_{c c e}(G)=6$ and $g_{c c e}^{+}(G)=\mathrm{a}$.
Proof: It can be easily verified that $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right.$,
$\left.v_{5}, x\right\}$ is a $g_{c c e}(G)=6$. Let $S_{1}=\left\{x, v_{1}, v_{2}, v_{3}, v_{4}\right\} \cup$
$\left\{z_{1}, z_{2}, \ldots, z_{a-5}\right\}$. Then S_{1} is a complement connected edge geodetic set of G. We prove that S_{1} is a minimal complement connected edge geodetic set of G. On the contrary suppose that S_{1} is not a complement connected edge geodetic set of G . Then there exists a complement connected edge geodetic set S_{2} such that $S_{2} \subset S_{1}$. Let y be a vertex of S_{1} such that $y \notin S_{2}$. If $y=z_{i}(1 \leq i \leq$ $a-5)$, then $v_{2} z_{i}, v_{6} z_{i} \notin I_{e}\left[S_{2}\right]$ for ($1 \leq i \leq a-5$). If $y=v_{i}(1 \leq i \leq 4)$, then there exists at least one $e \in E(G)$ such that $e \notin I_{e}\left[S_{2}\right]$. Then there exists a complement connected edge geodetic set M of G such that $|M| \geq a+1$. Since S, S_{1} and S_{3} are complement connected edge geodetic sets of $G, S \nsubseteq M, S_{2} \nsubseteq M$ and $S_{3} \nsubseteq M$. Also, since $p=a+2$, we have $|M|=$ $a+1$. Since $G[V-M]$ is connected, either v_{2} or $v_{6} \in M$. We assume that $v_{2} \in M$. Therefore $v_{5} \in M$. Hence it follows that $S_{3} \subset M$, which is a contradiction. Therefore $g_{c c e}^{+}(G)=a$.
Observation 3.7. Let G be a connected graph with $\Delta(G)=p-1$.
(i) If G contains only one universal vertex, then $g_{c c e}^{+}(G)=p-1$.
(ii) If G contains at least two universal vertices, then $g_{c c e}^{+}(G)=\mathrm{p}$.

Theorem 3.8. For a connected graph G of order, $g_{c c e}^{+}(G)=p$ if and only if $g_{c c e}(G)=p$.
Proof: Let $g_{c c e}^{+}(G)=p$. Then $S=V(G)$ is the unique minimal complement connected edge geodetic set of G. Since no proper subset of S is a complement connected edge geodetic set, it is clear that S is the unique minimum complement connected edge geodetic set of G and so $g_{c c e}(G)=p$. The converse follows from Theorem 3.1.

REFERENCES

[1] S.BeulahSamli, J.John and S.RobinsonChellathurai, The double geo chromaticnumber of a graph, Bulletin of the International Mathematical Virtual Institute, 11(1),(2021), 25-38.
[2] F. Buckley and F. Harary, Distance inGraphs, Addition-Wesley, Redwood City,CA,(1990).
[3] Bijo S. Anand, ManojChangat and UllasChandran S V, The edge Geodeticnumber of product graphs, Algorithms and Discrete Applied Mathematics,(2018),DOI: 10.1007/978-3-319-74180-2-12.
[4] J.John and D.Stalin, The edge geodetic selfdecomposition number of a graph,RAIRO - Operations Research,(2020), doi: 10.1051/ro/2020073.
[5] J.John, D.Stalin, Edge geodetic selfdecomposition in graphs,Discrete Mathematics, Algorithms and Applications, (2020),doi.org/10.1142/S1793830920500640.

